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Figure Captions

Figure 1 Normal Impact of a Single-Bumper Structure

Figure 2 Normal Impact of a Double-Bumper Structure
Figure 3 Final Output Frame, HULL Code Impact Simulation NR-26

Figure 4a Pressure Wall Plate, Experimental Test No. EHSS-2B (Front)

Figure 4b Pressure Wall Plate, Experimental Test No. EHSS-2B (Rear)

Figure 5 Final Output Frame, HULL Code Impact Simulation NR-2

Figure 6a Pressure Wall Plate, Experimental Test No. 115-3 (Front)

Figure 6b Pressure Wall Plate, Experimental Test No. 115-3 (Rear)

Figure 7 Final Output Frame, HULL Code Impact Simulation NR-3

Figure 8a Pressure Wall Plate, Experimental Test No. 117-1 (Front)

Figure 8b Pressure Wall Plate, Experimental Test No. 117-1 (Rear)

Figure 9 Final Output Frame, HULL Code Impact Simulation NR-4

Figure 10a Pressure Wall Plate, Experimental Test No. 117-2 (Front)
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Notation

Ad ........ pressure wall plate damage area

AS ........ pressure wall plate rear-side spall area

CO ........ material sound velocity

d ......... base diameter of cylindrical projectile; spherical projectile
diameter

dh ........ pressure wall plate equivalent single hole diameter

D ......... bumper plate hole diameter, single-bumper system

p1,D2 ..... outer, inner bumper plate hole diameter, double-bumper system

K ......... slope of shock velocity-particle velocity curve

L oo length of cylindrical projectile

S ... .. bumper plate/pressure wall plate stand-off distance,

single-bumper system

S1 ........ outer bumper plate/inner bumper plate stand-off distance,
double-bumper system
82 ........ inner bumper plate/pressure wall plate stand-off distance,

double-bumper system

tS ........ bumper plate thickness, single-bumper system

tsl,t52 ... outer, inner bumper plate thickness, double-bumper system
tw ........ pressure wall plate thickness

US ........ shock wave velocity

Voo impact velocity

8 ... impact trajectory obliquity

2 2 debris cloud cone angle, single-bumper system

d .. yéw angle in x-z plane

¢cr ....... critical yaw angle in x-z plane

Yoo yaw angle in y-z plane
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1.0  INTRODUCTION

Hydrocodes are a valuable numerical tool for the analysis of hypervelo-
city impact phenomena. Part of their value lies in their ability to provide
detailed information about the impact process which may be difficult or
impossible to obtain experimentally. For example, in the study of the
response of multi-wall structures under hypervelocity impact, the growth of
the debris cloud created by the impact of the projectile with the first
wall, or bumper plate, may be a point of interest. While it may be possible
to record the spread of the debris cloud experimentally (see, e.g. [1-41),
velocity and density distributions within the debris cloud are more easily
obtained from a numerical simulation of the impact event (see, e.g., [5,6]).
Additionally, impact conditions such as velocity, trajectory, etc., can be
more precisely controlled in numerical simulations than in experimental
tests where a range of uncertainty always exists. Once a numerical impact
simulation scheme has been validated through comparison with experimental
data, it can be used, albeit with great care, to extrapolate response cha-

racteristics in impact regimes where testing cannot be performed.

Over the last three decades, multi-wall structures have been analyzed
extensively, primarily through experiment, as a means of increasing the
protection afforded to the interior of habitable spacecraft (see, e.g., [7-
12]). This work has contributed significantly to the design of spacecraft
that will be exposed to high-speed impacts by pieces of orbital space deb-
ris, such as the habitable modules of the Space Station Freedom. However,
as structural configurations become more varied (material composition, geo-
metry, etc.), the number of tests required to characterize the response of

such structures and the cost of such tests has increased dramatically.



Although several analytical techiques have been developed to model the
response of multi-wall structures under high speed projectile impact, the
calculations involved often become unruly for geometries and material pro-
perties even slightly removed from the simplest assumptions (see, e.g.,
[13,14]). As an alternative to experimental testing and analytical models,
numerical modeling of high-speed impact phenomena has enjoyed a fairly high
level of use and success in predicting the response of a variety of struc-
tural systems under different kinds of impact loading conditions [15,16].
However, it is incumbent upon the user of numerical impact simulation codes
to be fully aware of their limitations with respect to the particular geo-

metry and impact conditions under consideration.

This report presents the results of a two-phase numerical/experimental
investigation of the hypervelocity impact response of multi-wall structures.
In the first phase, the results of a series of experimental high-speed
impact tests are compared against the pfedictions of the HULL hydrodynamic
computer code. The results of this comparative analysis are presented in
Part One of this report. In the second phase, a numerical parametric study
of multi-wall structural response to hypervelocity cylindrical projectile
impact was performed. These results are presented in Part Two of this

report.

The numerical impact simulation results were generated on the NASA/Mar-
shall Space Flight Center Cray X/MP supercomputer using the HULL hydro-
dynamic computer code (hereafter referred to as the 'HULL code’), a Eulerian
finite differenc; ébde with explicit time iatégration. In the HULL code, an
elastic/plastic constitutive law with work hardening and thermal softening

was employed with an ultimate strength failure criterion and the Mie-Grunei-
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sen equation of state. The hypervelocity impact testing was performed at
the Space Debris Simulation Facility of the Materials and Processes Labora-
tory at the NASA/Marshall Space Flight Center. This Facility consists of a
two-stage light gas gun capable of launching 2.5 mm to 12.7 mm projectiles

at velocities of 2 to 8 km/sec [17].

In both phases of this investigation, the conditions of the numerical
impact simulations and the experimental tests were chosen to simulate the
orbital debris impact of light-weight space structures as closely as pos-
sible, and still remain within the realm of experimental and numerical
feasibility. Kessler, et.al., [18] state that the average mass density for
orbital debris particles less than 10 mm in diameter is approximately 2.8
gm/cm®, which 1is approximately that of-aluminum. Therefore, the projectile
material for the experimental tests and numerical simulations was chosen to

be aluminum 1100-0.



2.0 THE HYPERVELOCITY IMPACT PROCESS

Consider the hypervelocity impact of a multi-wall structure by a spher-
ical projectile of diameter d traveling at velocity V. Figure 1 illustrates
the normal impact of a single-bumper system while Figure 2 shows the normal
impact of a double-bumper system. In the single-bumper system impact, the
projectile collides initially with the protective bumper (thickness ts),
which is a relatively thin layer of material placed at a small distance § in
front of the pressure wall (thickness tw) of the structural system. Upon
impact, strong shock waves propagate through both the projectile and the
bumper plate. The pressures associated with these shocks typically exceed
the strength of the projectile and bumper plate materials. As the shock
waves propagate, the projectile and bumper materia}s are heated adiabatical-
ly and non-isentropically. The release of the shock pPressures occurs isen-
tropically through the action of rarefaction waves that are created as the
shock waves interact with the free surfaces of the projectile and bumper
plate. This process leaves the projectile and bumper materials in high
energy states and can cause either or both to fragment, melt, or vaporize,

depending on material properties, geometry, and the impact velocity.

The bumper plates in multi-wall systems protect the pressure wall
plates against perforation by causing the disintegration of the impacting
projectiles and the creation of diffuse debris clouds which impart signifi-
cantly lower impulsive loadings to the pressure wall plates. In the single-
bumper system impact shown in Figure 1, the debris cloud (with cone angle 7v)
travels towards and impacts the pressure wall plate. In the double-bumper
system impact shown in Figure 2, the debris cloud created as a result of the

impact on the outer bumper plate first travels toward and impacts the inner

UECTAGMRIR A R

1) AU 1



bumper plate. This creates another debris cloud which then travels toward
and impacts the pressure wall plate. In either case, an area of damage Ad
is created on the pressure wall plate. The size of this impulsively loaded
area is governed by the manner in which the projectile and bumper plate(s)
fragment, melt, or vaporize, and by the spacing(s) between the bumper
plate(s) and the pressure wall plate. Occasionally the impact of a debris
cloud on the pressure wall plate results in rarefaction stresses near the
rear surface of the pressure wall that exceed the dynamic tensile strength
of the pressure wall material. In these cases, spall fragments are ejected

at high velocities from the rear side of the pressure wall, creating an area

of rear surface spall As.



3.0 PART ONE: HULL CODE PREDICTIONS VS. EXPERIMENTAL RESULTS

3.1 Introductory Comments

In this part, the results of a study in which experimental hypervelo-
city impact response characteristics of multi-wall structures were compared
against the predictions of the HULL code are presented and discussed. Fol-
lowing these introductory comments and a discussion of the experimental and
numerical test parameters, a comparative analysis is performed between 5
experimental results and numerical predictions of multi-wall structural

response under hypervelocity projectile impact. This analysis consists of

test-by-test comparisons and a comparison of numerically and experimentally

generated ballistic limit curves. The comparative analyses performed

reveals many interesting features of Hull code prediction capabilities for

multi-wall structures under a variety of hypervelocity impact conditions.

3.2 Impact Parameters and Structural Configurations

To maintain repeatability and consistency, spherical projectiles with

diameters from 0.25 to 1.0 cm were used in this part of the investigation.
The impact velocities of the numerical impact simulations ranged from 0.5 to
6.9 km/s, while in the experimental impact tests, the impact velocities
ranged from 3.0 to 6.9 km/s. Two types of multi-wall structures were con-
sidered: single-bumper and double-bumper. In all cases, experimental and
numerical, the bumper plates were aluminum 6061-T6é and the pressure wall
plates were aluminum 2219-T87. In the single-bumper systems, the bumper
plates were 1.6 mm thick; in the QOuble-bumper systems, each bumper was 0.8
mm thick for a total bumper thickness of again 1.6 mm. 1In all of the
single-bumper systems, the stand-off distance between the bumper plate and

pressure wall was kept constant at 10.16 cm. In the double-bumper systems,



although various combinations of intermediate stand-off distances were con-
sidered, the total stand-off distance between the outer bumper plate and the
pressure wall plate was also kept constant at 10.16 cm. In all of the
experimental tests and numerical impact simulations, the thicknesses of the

pressure wall plates was kept constant at 3.175 mm.

The mechanical and thermal properties of the projectile, bumper plate,
and pressure wall plate materials are presented in Table 1. These are the
values used as input by the HULL code in the impact simulations performed
for this investigation. In Table 1, 'ambient melt energy’ and 'ambient
vaporization energy’ refer to internal energies at the inception of material
melt and vaporization, respectively. Additional numerical simulation and
experimental test parameters are given in Tables 2 and 3 for single- and
double-bumper systems, respectively. In Tables 2,3, and subsequent results
comparison tables, an 'NR-’ prefix is used to designate a HULL code impact

simulation; all tests without an 'NR-’ prefix are experimental impact tests.

The test-by-test comparisons of the experimental results and the numer-
ical predictions are given in Tables 4 and 5; additional impact simulation
results are given at the ends of these Tables. These additional impact
simulations were performed for the construction of ballistic limit curves.
In Tables 4 and 5, experimental and numerical results are grouped according
to both geométric and impact energy similarity. It is noted that in these
tables, entries of ’'----' indicate that certain phenomena, such as pressure
wall perforation or front surface crater damage, did not occur. Additional-
ly, dh is the equivalent single hole diameter of all the holes in the
pressure wall plate in the event of pressure wall perforation. Figures 3

through 10 show final HULL code output frames and photographs of damaged



pressure wall plates of corresponding experimentally-tested multi-wall sys-
tems. Finally, Figures 11 and 12 present a comparison of numerical and
experimental ballistic limit curves for some of the single-bumper systems
and double-bumper systems, respectively, that were considered in this inves-
tigation. It is noted that the curves in Figures 11 and 12 are merely lines
of demarcation between regions of pressure wall perforation (above) and no

perforation (below).

3.3 Comparison of Hull Code Predictions and Experimental Results

3.3.1 Single-Bumper Systems -- Test-by-Test Comparison

A test-by-test comparison of numerical predictions and experimental
results for the single-bumper systems impact revealed a number of discrepan-
cies between observed phenomena and HULL code predictions. Although there
was good agreement for the diameter of the hole in the bumper plate, signi-
ficant differences were found to exist between prediction and observation of
the debris cloud cone angles, the extent of the pressure wall damage areas,
whether or not pressure wall perforation had occured, and the diameters of

the pressure wall holes in the event of a perforation (Table 4).

Without exception, HULL code predictions of pressure wall damage areas
and cone angles were smaller than the corresponding experimental values. On
the average, the HULL code underpredicted pressure wall damage areas by
approximately 56%, with a standard deviation of approximately 20%. This
underprediction of the damage areas by the HULL code was partly due to the
fact that the HULL code simulations were terminated somewhat prematurely and
partly due to an inadequate material response modelling within the HULL

code. Had the impact simulation been allowed to run for several more micro-




seconds, the debris cloud would have had that much more time to expand. Its
impact would then have naturally resulted in a somewhat larger damage area.
However, because an instantaneous failure criterion was used, the bumper and
projectile material that formed the debris cloud was not allowed to expand
fully in the numerical scheme before failing (i.e. fragmenting) and creating

the debris cloud.

With regard to the discrepancies between HULL code predictions of
pressure wall perforation and experimental results, the HULL code agreed
with experimental observations of pressure wall perforation or no perfora-
tion in 2 out of 6 cases. In the 2 cases where agreement existed, 1 was a
perforation and 1 was a perforation. Where both HULL predicted and experi-
ment showed pressure wall perforation, HULL agreed with the nature of the
perforation (i.e. a single small hole) but predicted a hole diameter slight-
ly larger than that which was observed experimentally (Table 4). In addi-
tion, the HULL code predicted a centrally-located hole whereas the hole in
the experimental test was slightly off-center. The symmetric location of
the hole in the HULL code run was obviously due to the symmetric nature of
the numerical scheme. In the testing of real structures and materials,
where voids and manufacturing defects are invariably present, such symmetric

response will rarely occur.

Finally, although rear-side spallation of the pressure wall plate
occured frequently in single-bumper system impact, it was never predicted by
the HULL code (Table 4). Figures 4a,b show the front and rear surfaces of a
pressure wall plate that exhibited extensive rear-side spallation. Figure 3
shows the final output frame of the corresponding HULL code run. In order

to be able to predict rear-side spallation, a significant increase in the



number of zones utilized by HULL is required [15]. However, this increase
would also increase memory requirements and run times. Thus, unless a
significant investment of computer time and funds is possible, it appears
that the HULL code cannot be used to study rear-side spallation phenomena in

multi-wall systems under high-speed impact.

3.3.2 Double-Bumper Systems -- Test-by-Test Comparison

A comparison of experimental resuits and numerical predictions for
double-bumper systems under spheriéal projectile impact revealed that there
were again differences between predicted and observed pressure wall damage
(Table 5). The HULL code impaéérsimulations over-predicted the préssure
wall damage areas by an average of approximately 6%, with a standard devia-
tion of approximately 56%. However, as indicated by the high value of the
standard deviation, this ’'small’ average difference is the result of a
fortuitous combination of ‘large’ over- and under-predictions of damage

areas by the HULL code.

An examination of the differences in pressure wall damage areas in
cases where the impact energy of the HULL code simulations matched exactly
those of the experimental tests revealed that a correlation may have existed
between the arrangement of the bumper plates and the over- or under-predic-
tion of pressure wall damage areas by the HULL code. When the outer and
inner bumpers were close together, the HULL code under -predicted pressure
wall damage area by approximately 34%. When the inner bumper plate was
moved closer to the pressure wall plate, the numerically predicted pressure
wall damage area went from an under-predicted value to an over-predicted

value: in those cases where the outer and inner bumpers were far apart, the

10
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HULL code over-predicted pressure wall damage areas by approximately 76%.

HULL code predictions of pressure wall perforation or no perforation
agreed with experiment in all 8 cases (Table 5). Of these 8 cases, 7 were
perforations and 1 was a no perforation. However, the nature of the per-
foration as predicted by the HULL code did not always agree with that which
was observed experimentally. 1In the 7 cases of pressure wall perforation,
the HULL code predicted single holes in each case (with relatively large
holes in 2 cases) while experimental results showed single holes in 3 tests
(although one test resulted in a pin-hole), a double-hole in 1 test, and
through-cracks in 3 tests. In the instances where the HULL code predicted
and experiment showed clear-through pressure wall holes, the hole diameters
predicted by the HULL code were on average twice as large as those observed

experimentally.

Figures 5 through 10 show final HULL code output frames and photographs
of damaged pressure wall plates from corresponding experimentally tested
double-bumper systems. These figures illustrate some of the interesting
similarities and discrepancies between HULL code predictions of pressure
wall damage and experimental results. In Figures 5 and 6, the location of
the pressure wall plate hole is predicted by the HULL code to be centrally
located while the experimental test showed the hole to be located slightly
off-center. Some major differences between HULL code predictions and ex-
perimental results are evident in Figures 7 through 10. In Figures 7 and 9,
it can be seen that the HULL code predicted rather large central holes in
the pressure wall plates. Although no clear holes are evident in Figures 7
and 9, the extreme necking of the material in the circled regions implies

that had the numerical impact simulations been allowed to run for a few more

11



microseconds, complete perforations similar to that shown in Figure 5 would
have occurred. As can be seen in Figures 8a,b and 10a,b, the experimental
tests of the corresponding double-bumper systems resulted in a pressure wall
plate with a through-crack and a pressure wall plate with a central bulge
and a pin-hole perforation. Thus, although the HULL code agreed with exper-

iment as to whether or not pressure wall perforation occurred, the exact

details of the predicted and observed perforation are significantly different.

Finally, there was excellent agreement between HULL code éredictions
and experimental results for the diameter of the hole in the outer bumper
plate (Table 5). However, the HULL code under-predicted the diameter of the
hole in the inner bumper by an average of approximately 43%. This is again
due to the fact that in the HULL code impact simulations, the primary debris
clouds were not able to expand as rabidly as they did in the experimental
tests. In addition, although the Hull code agreed with experiment in not
showing any rear-side spallation of pressure wall plates in double-bumper
systems, this was probably due to the inability of the Hull code to predict

spall in such systems using the parameters with which it was run,

3.3.3 Overall Response Comparison

The ability of the Hull code to predict overall system response was
studied by comparing ballistic limit curves generated with Hull code and
experimental data. Using the numerical results in Table 4, a ballistic
limit curve was obtained for aluminum single-bumper systems with ts=1.6 mm,
tw=3.l75 mm and §=10.16 cm under spherical projectile impact. This plot is
shown in Figure 11 superposed on an experimental ballistic limit curve for

the same structural system which was obtained from Figure 3.2 in [12]. A
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comparison of the two curves reveals fairly close agreement at velocities
above approximately & km/sec. No experimental results were generated at
speeds lower than 3 km/sec; hence, no comparisons can be made for low
velocity impacts. A similar observation can be made by comparing the numer-
ical and experimental ballistic limit curves for aluminum double-bumper
systems with tsl=t52=0'8 mm, tw=3.175 mm, Sl=2.54 cm and SZ=7'62 cm (Figure
12). 1In Figure 12, the numerical curve was generated using the data in
Table 5 while the experimental curve was taken from Figure 8.3 in [12].
Based on these observations, it appears that the HULL code correctly pre-

dicts the ballistic limit curves for the single- and double-bumper systems

considered in this study, especially in the velocity range 4 to 7 km/sec.

3.4 Concluding Comments

A comparative study between HULL code predictions and experimental
observations of hypervelocity impact response has been successfully per-
formed. In a test-by-test comparison, differences between numerical predic-
tion and test result were frequently observed for single- and double-bumper
configurations impacted by hypervelocity projectiles. For the single-bumper
systems, the most serious discrepancies were in the magnitudes of the damage
areas on the pressure wall plates and whether or not perforation of spalla-
tion of the pressure wall occured due to the hypervelocity impact loading.
For the double-bumper systems, there was good agreement between prediction
and test result with respect to pressure wall plate perforation. However,
the Hull code predictions differed from test results in the nature of the
perforation and the extent of the damage areas on the pressure wall plates.
Finally, a comparison of perforation curves generated with experimental and

Hull code data revealed good agreement between observed and predicted bal-
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listic limit curves for both single- and double-bumper systems at velocities

between approximately 4 and 7 km/sec.

Based on these observations, it appears that HULL code predictions of
hypervelocity impact response characteristics of a specific multi-wall sys-
tem (i.e. pressure wall perforation or no perforation, pressure wall hole
diameter in the event of a perforation, pressure wall damage area, etc.) can
be inaccurate and misleading. Serious errors in system design can occur if
the design were to be based on a small number of Hull code predictions of
impact response. However, if a wide range of impact loading conditions are
considered, then the ballistic limit curve of the system generated from the

entire series of numerical simulations can be used as a relatively accurate

indicator of actual system response.
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4.0 PART TWO: PARAMETRIC STUDY OF HYPERVELOCITY IMPACT
BY CYLINDRICAL PROJECTILES

4.1 Introductory Comments

While cylindrical projectile impact has long been of interest to the
impact mechanics community, the majority of the work performed has been with
long rod projectiles (i.e. L/d>>1) and has been focused primarily on the
response of thin and thick single-plate targets to impacts at speeds on the
order of 1-3 km/sec (see, e.g., [19-23]). Unfortunately, because of the
significant changes in target response that occur as impact velocity is
increased, it is difficult to extrapolate the results of such 'low’ velocity
single-plate studies to multi-wall structures under 'high’ velocity or
'hypervelocity’ impact. Furthermore, hypervelocity impact testing of mulci-
wall structures with non-spherical projectiles has been very limited in
scope. Such testing was often included as a small part of a much larger
test program that, for the most part, employed spherical projectiles (see,
e.g., [3,6]). However, the test results did show that projectile shape does
affect the perforation response of multi-wall structures (see also [24]).
Orbital debris particles are in general not spherical and can impact an
orbiting spacecraft at speeds in excess of 5 km/sec, in order to optimize
the design of a structure destined for the orbital debris environment, it is
important for the design engineer to be aware of the many damage modes
possible in multi-wall structures under a variety of hypervelocity projec-

tile impact conditions.

Since the response of multi-wall structures to spherical projectile
impact has been relatively well-analyzed, the objective of this part of the

investigation was to perform a numerical parametric study of multi-wall
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structural response to high speed cylindrical projectile impact. Following
these introductory comments and a discussion of the numerical impact simula-
tion parameters, the results of the parametric study are presented and
discussed. TImpact simulation results for a variety of different cylindrical
projectiles and impact conditions are reviewed qualitatively and quanita-
tively. Impact damage in the structural systems is characterized according
to the extent of pressure wall perforation and crater damage as a result of
the impact loadings. The parametric analyses performed revealed many inter-
esting features of multi-wall structural response to hypervelocity cylin-
drical projectile impact conditions. However, in light of the conclusions
drawn at the end of the first phase of this investigation, the results
obtained in this phase and presented in this part of the report are used
only to observe response trends and are not intended to be used to predict

specific impact response characteristics.

4.2 Impact Parameters and Structural Configurations

To assess the effect of projectile shape on structural response, equal-
mass sphefical and cylindrical projectiles were used in the numerical impact
simulétions; the L/d values 6f the cylindrical projectiles were varied from
0.0277 to 3.0. Two types of multi-wall structures were considered in this
part of the investigation: single-bumper and double-bumper. In each case,
the bumper plates and pressure wall plates were 6061-T6 and 2219-T87 alumi-
num, respectively. The mechanical and thermal properties of the projectile,
bumper plate, and pressure wall plate are presented in Table 1. These are
the values used as input by the HULL code in the impact simulations per-
formed for this investigation. Additional numerical impact simulation para-

meters are given in Table 6 in which the angle 6 is the trajectory
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obliquity measured from the vertical, that is, #=0° is a normal impact.

Tables 7 through 10 present the results of the numerical parametric
study. In Tables 7 through 10, experimental and numerical results are
grouped according to both geometric and impact energy similarity. It is
noted that in these Tables, entriesrof *----’ indicate that certain phenom-
ena, such as pressure wall perforation or front surface crater damage, did
not occur. Additionally, dh is the equivalent single hole diameter of all
the holes in the pressure wall plate in the event of pressure wall perfora-
tion. Figures 13 and 14 illustrate the normal impact of an unyawed cylin-
drical projectile of diameter d and length L travelling at a velocity V on a
single- and double-bumper system, respectively. In Figure 15, coordinate
axes are superimposed on a cylindrical projectile in order that trajectory
yaw angles may be defined. Specifically, the yaw angles ¢ and 3 are defined
to be the yaw angles in the x-z and y-z planes, respectively (see, e.g.,
Figure 16). In this manner, a normal ’'straight-on’ disk or cylinder has yaw
angles of ¢=Y=0° while a normal ‘edge-on’ disk or cylinder has yaw angles of
$=0° and y»=90°. Figures 17 through 26 and 28,29 show pertinent HULL code
output frames that are used for more detailed impact response comparisons;
Figure 27 shows the geometry of a yawed impact for a critical yaw angle

calculation.

4.3 Results and Observations

4.3.1 Single-Bumper Systems -- Spherical vs. Cylindrical Projectile Impact

A comparison of single-bumper system response to spherical and cylin-
drical projectile impact clearly demonstrated the effect of projectile
geometry on system response. When the projectile trajectory was normal to

the bumper plate, it was found that cylindrical projectiles with large L/d
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ratios (le. long rods) were more damaging than equal-mass spherical projec-
tiles (Table 7). 1In the spherical projectile impacts, the projectile and
the bumper plate were completely fragmented and a disperse debris cloud was
created (see, e.g., the HULL code output for NR-67 in Figures 17a-c). How-
ever, when a long rod impacted the bumper plate, only the front portion of
the cylinder was fragmented, leaving the remaining rear section intact. For
example, in NR-66 (L/d=3.0), nearly one-third of the original cylindrical
projectile was left undisturbed after the projectile had passed through the
bumper plate (Figure 18b). Eventually, this large projectile fragment
perforated the pressure wall plate (Figure 18c). Similarly, in NR-68 and
NR-38, the portions of the rod which remained intact after passingvthrough
the bumper plates had sufficient energy to perforate the pressure wall

plates.

As the L/d ratio decreased to unity, cylindrical and spherical projec-
tile impacts were observed to inflict similar levels of damage to the pres-
sure wall plates of single-bumper systems. This is in agreement with the
results of a previous experimental study of the effects of projectile shape
on the hypervelocity impact response of dual-wall structures [25]. For
example, in the comparing the results of NR-38, NR-44, and NR-45, as the L/d
ratio decreased from 2.0 to 0.31, the damage sustained by the pressure wall
plate decreased markedly (Table 7). In fact, in NR-45 (L/d=0.31), the
impact of the cylindrical projectile on the bumper plate resulted in com-
plete fragmentation of the projectile. Subsequently, there was no measur-
able damage to the pressure wall plate. 1In this case, the debris cloud
created strongly resembled that observed in NR-24, the corresponding spheri-

cal projectile impact test.
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4.3.2 Single-Bumper Systems -- Effect of L/d Ratio

It was found that the cylindrical projectiles considered in this study
could be divided into three groups depending on their L/d ratios. These
groups are 'long rods’ (L/d>1), ’'compact rods’ (L/d=1l) and 'thin disks’
(L/d<1l). Figures 19 through 23 demonstrate the changes in debris cloud
composition and pressure wall response for single-bumper system impacts as
the L/d ratio was decreased from 2.0 to 0.0277 while the mass of the impac-

ting projectile was kept constant.

As noted previously, when a long-rod projectile impacted a single-
bumper system, complete fragmentation of the projectile upon impact with the
bumper failed to occur. For example, in NR-38 (L/d=2.0), the solid fragment
remaining after bumper plate impact went on to perforate the pressure wall
plate (see the results for NR-38 in Figure 19a-c and in Table 8). As the
L/d ratio decreased to unity, more complete fragmentation of the projectile
occurred, which in turn resulted in an increase in the spread of the debris
cloud. As a result, although the crater damage area increased, the perfora-
tion threat of the projectile decreased (see, e.g., the results for NR-44 in
Table 8 and compare with those for NR-38). 1In Figures 20a,b and 2la,b,
cylindrical projectiles with L/d ratios of 1.0 and 0.31, respectively, are
seen to be completely broken up by the bumper plates and cause minimal
damage to the pressure wall plates. Finally, in the thin disk impacts
(L/d=0.11 and 0.0277), intact sections of the bumper plate were ripped away
and sent speeding towards the pressure wall plate. In addition, for these
L/d ratios, the debris clouds were noticeably ’'spiked’ in appearence (see
Figures 22a-c and 23a-c). The spiked shape of the debris clouds and the

large fragments contained within them eventually resulted in pressure wall
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perforation and extreme pressure wall deformation to the point of incipient

perforation (Figures 22c¢ and 23c, respectively).

It is interesting to note that the projectiles in NR-42 and NR-45
appear to be in a transition region between 'compact rod’ and 'thin disk’
projectiles. In NR-45, the debris cloud produced by the impact of a cylin-
drical projectile with L/d=0.31 quickly degraded into very small particles
which cause no measurable pressure wall damage. This behavior resembled
that observed in NR-44 where L/d=1.0. On the other hand, in NR-42 where
L/d=0.11, a small disk appeared to be present at the leading edge of the
debris cloud as it left the bumper plate immediately after impact. ' This
behavior resembled that observed in NR-43 where L/d=0.0277. It would
appear, therefore, that for the projectile and target materials considered
in this study, a transition from a compact rod to a thin disk projectile

occurs between L/d=0.31 and L/d=0.11 or approximately at L/d=0.2.

4.3.3 Single-Bumper Systems -- Effect of Projectile Orientation

From Table 9, it can be seen that, of the different projectile orienta-
tions in&éstigated, normal and oblique edgé-on disk impacts (e.g. NR-48 and
NR-46, respectively) were more damaging to the pressure wall than normal
straight-on (e.g. NR-42) and yawed (e.g. NR-49) impacts. This can be seen
by comparing the pressure wall hole diameters for these four tests in Table
9 and the HULL code output in Figures 22 and 24 through 26. 1In tests NR-46
and NR-48 (Figures 24a-c¢ and 25a-c, respectively), the pressure wall was
impacted by a large debris cloud containing large bumper plate and projec-
tile fragments. Although the impact of NR-42 created a spiked debris cloud

with a high mass concentration at the leading tip of the cloud (see Figures
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22a-c), the high degree of projectile fragmentation resulted in a smaller
pressure wall plate hole than in NR-46 and NR-48 (compare Figures 22c, 24c,
and 25c). The least damaging projectile orientation was that of the disk in
NR-49, in which the projectile had a yaw angle of ¢=60°. The normal impact
of this yawed projectile also resulted in a high degree of fragmentation and

did not perforate the pressure wall plate (see Figures 26b,c).

The harmlessness of the yawed impact considered in this study can be
explained by using a relatively simple model of yawed cylindrical projectile
impact [26]. Consider the normal impact at velocity V of a cylindrical
projectile whose longitudinal axis is yawed an angle ¢ with respect to the
trajectory of the projectile (Figure 27). In Figure 27, point A is a point
of contact between the projectile and the surface of the target, point B is
a point along the surface of the projectile facing the target, and point C
is the projection of point b onto the surface of the target. We define a
‘critical angle of yaw’ ¢cr such that if ¢=¢Cr, then the shock wave gener-
ated along the target-facing surface of the projectile will reach point B at
exactly the same time that point B will reach the target surface (at point
C). Given this definition of ¢cr’ two possibilities arise. First, if
¢<¢Cr, then the shock wave will reach point B after point B strikes the
target surface. In this case, the amplitude and duration of the shock
pressures along the projectile/target interface will be essentially the same
as that for an impact of the same projectile at the same velocity without
yaw (ie. ¢=0°). Second, if ¢>¢Cr, then the shock wave will reach point B
before point B strikes the target surface. 1In this case, the full shock
pressure will exist only at the initial point of impact. At other points

along the projectile surface facing the target, the projectile material will
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be shocked and partially released before striking the target surface. As a
result, the shock pressures generated upon impact will be lower in magnitude
and will have a shorter duration than those generated in a yawed impact

where ¢>¢Cr.
To find ¢cr’ we note that if ¢=¢Cr, then
BC/Vo = AB/US (L)

that is, the time required for the shock wave to reach point B (AB/US) is
equal to the time required for point B to reach point C (BC/V), where US is

the projectile material shock wave velocity. Rearranging eqn (1) yields
V,/Ug = BC/AB = sin($_) (2)
so that

b, = sin”H(v/u) (3)

Finally, for a like material-like material impact, the shock wave

velocity is related to the impact velocity through the relationship
U, =C_ +Kv/2 (4)

For the projectile and target materials in NR-49 (both aluminum),
Co=5.2 km/sec and K=1.38. For V=6.0 km/sec, equations (3,4) yield a criti-
cal yaw angle of ¢Cr=40°. Based on the discussion in the preceding para-
graph, since the yaw angle of NR-49 exceeds ¢cr’ the projectile in NR-49 has
already begun to deteriorate by the time it competely passes through the
bumper plate. This explains why the debris cloud is larger in NR-49 than in

NR-42 and NR-46 and why the impact is relatively harmless.
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4.3.4 Single vs. Double-Bumper System Impact

As expected, it was found that double bumper systems offered more
pressure wall protection against perforation by cylindrical projectiles with
large L/d ratios than did equal-weight single bumper systems. The most
dramatic illustration of this can be seen by comparing the results for NR-39
in which a long rod impacted a double-bumper system with those for NR-38 in
which an the sme long rod impacted an equal-weight single-bumper system
(Table 10). While a large section of the long rod projectile remained
intact after impact with the single bumper in NR-38 (Figure 19b) and the
first bumper in NR-39 (Figure 28b), the second bumper in NR-39 caused addi-
tional projectile fragmentation. As a result, the pressure wall of NR-39
was not perforated and suffered only minor damage (Figure 28c) while that of

NR-38 was completely perforated (Figure 19c).

In case of thin disk impact (NR-47 and NR-43 in Table 10), the impact
of the disk on the single bumper of NR-43 and the first bumper of NR-47
caused intact sections of the bumper plates to rip away and travel towards
either the pressure wall in the single-bumper system or the inner bumper of
the double-bumper system (Figures 23b and 29b, respectively). Although
neither system was perforated, in the double-bumper system the impact of the
outer bumper and projectile fragments on the inner bumper caused more com-
plete fragmentation to occur than that which was observed in the single-
bumper system (compare Figures 23c and 29c). Therefore, it would appear
that the pressure walls of single-bumper configurations would also be at a
greater risk of perforation by thin disk projectiles than the pressure walls

of equal-weight double-bumper systems.
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4.4 Concluding Comments

A numerical parametric study of hypervelocity impact response using the
HULL hydrodynamic computer code has revealed several interesting response
characteristics of single- and double-bumper systems under cylindrical pro-
jectile impact. For single-bumper systems, long rod impacts were found to
be more damaging than equal-weight spherical projectiles because the trail-
ing end of the rods survived the initial bumber plate impacts relativelyr
intact. The damage caused by compact rod impacts was similar to that caused
by spherical projectile impacts. Thin disk impacts caused a relatively
intact section of the bumper plate to rip away and impact the pressure wall.
Finally, edge-on disk impacts, whether normal or oblique, were more damaging
than straight-on impacts. In thercase of long rod and thin disk impacts,
double-bumper systems were found to offer more protection to the pressure
wall against perforation than equal-weight single-bumper systems because the

inner bumpers caused additional fragmentation of the debris cloud particles.
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TABLE 1 Material Properties

Projectile Pressure Wall Bumper
Material Property
1100-0 2219-T87 6061-T6
Ambient Density (gm/cm?®) 2.71 2.80 2.71
Speed of Sound (km/sec) 5 38 5 38 5 38
Shock Velocity- Particle
Velocity Slope 1.337 1.337 1.337
Initial Gruneisen
CoefFicient 2.10 2.10 2.10
Poisson’s Ratio 0.33 0.33 0.33
Initial Yield Strength
(x10'! dynes,/cm?) 3.44738 3.79212 2.48211
Saturation Yield Strength
(x10'! dynes/cm?) 8.96318 4.41264 2.89580
Plastic Strain at Satura-
tion Yield Strength 0.35 0.06 0.10
(Ultimate Failure Strain)
Ultimate Failure Stress
(x1019 dynes/cm?) 1.00 1.16 1.16
DeBye Temp. (°K) 375 375 375
Vapor Coefficient 0.1 0.1 0.1
Ambient Melt Energy per
Unit Mass (x10° ergs/gm) 7.30 7.30 7.30
Fusion Energy per Unit
Mass (x10% ergs/gm) 3.96 3.96 3.96
Ambient Véporization
Energy per Unit Mass 3.20 3.20 3.20
(x10° ergs/gm)
Sublimation Energy per
Unit Mass (x10° ergs/gm) 1.192 1.192 1.192
Ambient Energy per Unit
Mass at Vaporization End 1.512 1.512 1.512

(x1011 ergs/gm)
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TABLE 2 Single-Bumper System Impact Parameters

Numerical d \Y g t t S
Run No. (cm) (km/s) (deg) (mi) (mm) (cm)
Numerical Simulations
NR-14 1.000 6.00 C 1.6 3.175 10.16
NR-21 0.400 3.00 0 1.6 3.175 10.16
NR-22 0.400 4.00 0 1.6 3.175 10.16
NR-23 1.000 0.50 0 1.6 3.175 10.16
NR-24 0.500 6.00 0 1.6 3.175 10.16
NR-25 0.600 1.00 0 1.6 3.175 10.16
NR-26 0.625 6.00 0 1.6 3.175 10.16
NR-27 0.250 3.50 0 1.6 3.175 10.16
NR-28 0.500 1.50 0 1.6 3.175 10.16
NR-29 0.300 2.00 0 1.6 3.175 10.16
NR-30 0.400 5.00 0 1.6 3.175 10.16
NR-92 0.475 4.35 0 1.6 3.175 10.16
NR-94 0.635 6.90 0 1.6 3.175 10.16
Experimental Tests
EHSS2B 0.635 5.88 0 1.6 3.175 10.16
P05 0.635 6.90 0 1.6 3.175 10.16
P27 0.475 4.53 0 1.6 3.175 10.16
P27A 0.475 3.87 0 1.6 3.175 10.16
P27B 0.475 4.15 0 1.6 3.175 10.16
PT4B 0.635 4.25 0 1.6 3.175 10.16
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TABLE 3 Double-Bumper System Impact Parameters

Numerical d \Y g tSl t52 tw S1 82

Run No. (cm) (km/s) (deg) (mm) (min) (mm) (cm) (em)

Numerical Simulations

NR-1 0.635 4.40 0 0.8 0.8 3.175 2.54 7.62
NR-2 0.635 3.82 0 0.8 0.8 3.175 2.54 7.62
NR-3 0.635 4.09 0 0.8 0.8 3.175 5.08 5.08
NR-4 0.635 4.34 0 0.8 0.8 3.175 5.08 5.08
NR-5 0.635 4.40 0 0.8 0.8 3.175 7.62 2.54
NR-6 0.635 4.97 0 0.8 0.8 3.175 7.62 2.54
NR-15 1.000 6.00 0 0.8 0.8 3.175 2.54 7.62
NR-31 0.700 7.00 0 0.8 0.8 3.175 2.54 7.62
NR-32 0.500 2.00 0 0.8 0.8 3.175 2.54 7.62
NR-33 0.400 3.00 0 0.8 0.8 3.175 2.54 7.62
NR-34 0.350 3.50 0 0.8 0.8 3.175 2.54 7.62
Experimental Tests
115-1 0.635 4.40 0 0.8 0.8 3.175 2.54 7.62
115-3 - 0.635 3.82 0 0.8 0.8 3.175 2.5 7.62
116-2 0.475 2.57 0 0.8 0.8 3.175 2.54 7.62
117-1 0.635 4.09 0 0.8 0.8 3.175 5.08 5.08
117-2 0.635 4.17 0 0.8 0.8 3.175 5.08 5.08
118-1 0.635 4.40 0 0.8 0.8 3.175 7.62 2.54
118-3 0.635 4.52 0 0.8 0.8 3.175 7.62 2.54
130C 0.762 5.25 0 0.8 0.8 3.175 2.54 7.62
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TABLE 4  Comparison of Numerical and Experimental Results,
Single-Bumper Systems

Test Test Energy Pressure Wall D dh Ay 04 A
No. Type J Perforated? (cm) (cm) (cm2) (deg) (c§2)
NR-30 num 1,136 N 0.86 ---- 3.0 12.5 ----
P27A exp 1,140 Y 0.86 0.44 21.7 29.0 ==
NR-92 num 1,440 Y 1.06 0.35 23.1 31.5 ----
P27 exp 1,562 N 1.07 ---- 45.6 41.0 ----
NR-92 num 1,440 Y 1.04 0.35 23.1 31.5 ----
P27B exp 1,311 Y 1.00 0.30 31.7 34.5 ----
NR-24  num 3,196 N 1.01 ---- 40.9 41.0 ----
PT4B exp 3,285 Y 1.27 0.64 98.1 57.5 2.58
NR-26 num 6,242 N 1.29 ---- 18.4 28.0 ----
EHSS2B exp 6,287 N 1.22 .- 62.1 47.5 5.23
NR-94  num B,657 N 1.39 ---- 48.4 445 -—---
P05 exp 8,657 Y 1.42 0.47 91.5 56.0 0.19
NR-14 num. 25,566 Y 1.72 3.02 32.8 37.0 ----
NR-21  num. 409 Y 0.65 3.23 2.6 11.0 ----
NR-22  num. 727 Y 0.75 0.38 2.0 9.5 ----
NR-23  num. 177 N 0.80 ---- 75.4 54.5 ----
NR-25  num. 153 N 0.65 ---- 77.1 55.5 ----
NR-27  num. 136 N 0.43 .- 3.9 7.0 ----
NR-28  num. 199 Y 0.59 0.43 12.1 11.0 ----
NR-29  num, 77 N 0.38 ---- 12.5 13.5 .-
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TABLE 5 Comparison of Numerical and Experimential Results,
Double-Bumper Systems

Test  Test Sl S2 Energy Pressure Wall D1 D2 dh Ad
No. Type (cm) (cm) (I Perforated? (cm) (cm) (cm) (cm2)
NR-33 num 2.54 7.62 409 Y 0.65 0.65 0.43 3.3
1162 exp.  2.54 7.2 s03 Yy 0.66 0.89 crack 1.9
NR-2 num 2.54 7.62 2,653 Y 1.08 1.23 0.76 29.6
1153 exp. 254 7.62 2,653 v 091 1.95 0.49 38.3
NR-1 num. 2.54 7.62 3,520 N 1.13 1.18 ---- 21.2
1151 exp. 2.54 7.62 3,50 N 097 2.58 .- 381
NR-31 num 2.54 7.62 11,936 Y 1.19 2.80 0.431 23.7
1306 exp.  2.54 7.62 8,826 y 112 346 0.362 34.8
NR-3 num 5.08 5.08 3,042 Y 1.08 1.29 1.34 7.1
11771 exp. s08 508 3062 y 0.97 3.80 crack 13.2
NR-4 num 5.08 5.08 3,425 Y 1.08 1.08 2.08 13.9
117:2 exp.  s.08 s5.08 3,425 y 092 2.70 0.105 14.3
NR-5 num 7.62 2.54 3,520 Y 1.08 0.97 1.19 11.2
81 exp. 762 254 320 v 0.96 3.68 037 6.5
NR-6 num 7.62 2.54 4,492 Y 1.08 1.02 1.19 12.5
118.3 exp. 762 2.5 3,715 y 10l 3.83 crack 7.0
NR-15 num. 2.54 7.62 25,566 Y 1.72 2.80 3.02 36.2
NR-32 num. 2.54 7.62 355 Y 0.75 0.75 0.65 8.2
NR-34 num. 2.54 7.62 373 N 0.65 0.65 ---- 1.8

1Single hole
2Double hole
3Pin-hole
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TABLE 6 Numerical Impact Simulation Parameters for Parametric Study

Numerical d L/D \ 8 & ¥ tSl t32 tw S S
Run No. (cm) (km/s) (deg) (deg) (deg) (mm) (mm) (mm) (cm) (cm)
Single-Bumper Systems, Spherical Projectiles
NR-24 0.500 ---- 6.0 0 ---- ---- 1.6 ---- 3.175 10.16 ----
NR-67 0.890 ---- 10.5 0 ---- ---- 1.6 ---- 3,175 11.25 ----
Single-Bumper Systems, Cylindrical Projectiles
NR-38 0.350 2.00 6.0 O 0 0 1.6 ---- 3.175 10.16 ~----
NR-42 0.913 0.11 6.0 O 0 0 1.6 ---- 3.175 10.16 ----
NR-43 1.440 0.0277 6.0 0 0 0 1.6 ---- 3.175 10.16 ----
NR-44 0.437 1.00 6.0 0 0 ¢ 1.6 ---- 3.175 10.16 ----
NR-45 0.635 0.31 6.0 0 0 0 1.6 ---- 3.175 10.16 ----
NR-46 0.913 0.11 6.0 60 0 90 1.6 ---- 3.175 10.16 ~----
NR-48 0.913 0.11 6.0 O 0 90 1.6 ---- 3.175 10.16 ----
NR-49 0.913 0.11 6.0 0 60 0 1.6 ---- 3,175 10.16 ----
NR-66 0.519 3.00 10.5 O 0 0 1.6 ---- 3.175 11.25 ----
NR-68 0.606 2.00 10.5 O 0 0 1.6 ---- 3.175 11.25 ~----
Double-Bumper Systems, Cylindrical Projectiles
NR-39 0.350 2.00 6.0 O 0 0 0.8 0.8 3.175 2.54 7.62
NR-47 1.440 0.0277 6.0 0 0 0 0.8 0.8 3.175 2.54 7.62
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TABLE 7 Comparison of Numerical Spherical and Cylindrical Projectile

Impact Test Results, Single-Bumper Systems, §=¢=1p=0°
Numerical /D Energy Pressure Wall D Ad ¥
Run No. (kJ) Perforated? (cm) (cm) {cm?) (deg)
NR-67 Sphere 55.197 N 1.8 ---- 20.2 22.5
NR-66 3.0 49,255 Y 1.4 1.3 28.3 26.5
NR-68 2.0 52.273 Y 1.4 1.4 11.4 17.0
NR-24 Sphere  3.196 N 1.0 ---- 40.9 41.0
NR-38 2.0 3.196 Y 1.0 0.9 11.8 11.5
NR-44 1.0 3.200 N 1.1 ---- 32.8 37.0
NR-45 0.31 3,196 N 1.3 ---- ---- ----
TABLE 8 Effect of Cylindrical Projectile L/D Ratio on
Single-Bumper System Response, §=¢=1p=00

Numerical L/D Energy Pressure Wall D Ay ¥
Run No. (kJ) Perforated? (cm) (cm) (cm?) (deg)
NR-38 2.0 3.196 Y 1.0 0.9 3.0 11.5
NR-44 1.0 3.200 N 1.1 ---- 32.8 37.0
NR-45 0.31 3.196 N 1.3 S - - -
NR-42 0.11 3.210 Y 1.5 0.4 11.8 22.5
NR-43 0.0277 3.172 Y 1.8 (1) 19.3 29.0

(1) Severe necking of

pressure wall plate near debris cloud impact site.
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TABLE 9 Effect of Cylindrical Projectile Orientation on
Single-Bumper System Response

Numerical L/ 6 é Y Energy Pressure Wall D Ad ¥
Run No. (deg) (deg) (deg)y (kJ) Perforated? (cm) (cm) (cm?) (deg)

NR-42 0.11 0 0 0 3.210 Y 1.5 0.4 11.8 22.5
NR-46 0.11 60 0 90 3.210 Y 1.8 1.4 14.6 17.5
NR-48 0.11 0 0 90 3.210 Y 1.4 1.2 25.6 33.0
NR-49 0.11 0 60 0 3.210 N 1.3 --- 30.6 35.0

TABLE 10 Comparison of Numerical Single- and Double-Bumper
Test Results, Cylindrical Projectiles, f=¢=y=0°

Numerical L/D S1 S Energy Pressure Wall D1 D2 Ad
Run No. (cm) (cm) (kJ) Perforated? (cm) (cm) (cm)

(cm?)

NR-39 2.0 2.54 7.62 3.196 N 0.8 1.3 ---- 25.6
NR-38 2.0 10.16 ---- 3.196 Y 1.0 ---- 0.9 3.0
NR-47 0.0277 2.54 7.62 3.206 N 2.0 4.3 ---- 11.8
NR-43 0.0277 10.16 ---- 3.172 N 1.8 ---- ---- 19.3
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PRIMARY
DEBRIS CLOUD /
As

Figure 1. Normal Impact of a Single-Bumper Structure.

S DEBRIS CLOU
|

SECONDARY
DEBRIS CLOUD

Figure 2. ©Normal Impact of a Double-Bumper Structure.

37



DO Y010 T 1) ey R R R R T NI R TTETRS

"9T-UN UOTIernuts 3oedwI 9pod TINH ‘ewelg ndano Teutd ¢ aanbryg

@m«\ﬁxm 1Y WOGCO 0=VId 'd3S HON| O+ imMM&EDm JTONIS

38

200 ¢ Lsjqo.y 0087 394D .
20 ¢ 3097 2
, wa snipoy wo m:_m,nmm £k il
0/ m,._m N_ﬁ 8T ) o0 1 87 et 9 QL
1 1 1 1 i ) T3 oA
o0
L
; +1
e
-eT
- T
R
<3
k=)
o 3
2
O
(4]
g
S B
+1T or'g
otz alc €
01z 081 I
B’ QgL
- o5t oL
] bl 0131006
M 01006 OO0 R Eh
B 01009 -0 100°¢
M _oIxopc QOO
S0 /b
sanpp aojon - 971
cmne - ot

Ajsua(]



EHSS-2B
PROJ: 0.635 CM 10.16 CM STAND-OFF
WALL: 3.175 MM FRONT
VELOCITY: 5.85 KM/SEC 0 DEG

a1

Figure 4a. Pressure Wall Plate, Experimental Test No. EHSS-2B (Front).

EHSS-2B
PROJ: 0.635 CM 10.16 CM STAND-OFF
WALL: 3.175 MM REAR
VELOCITY: 5,85 KM/SEC

- ——

Figure 4b. Pressure Wall Plate, Experimental Test No. '“EHSé—ZB (Rear) .
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|PROJ: 0.635 CM 10.16 CM STAND-OFF
WALL: 3.175 MM FRONT .
= 0 DEG "%

PROJ: 0.635 CM  10.16 CM STAND-OFF
BWALL: 3.175 MM REAR
#'VELOCITY: 3.82 KM/SEC 0 DEG

.

Figure 6b. Pressure Wall Plate, Experimental Test No. 115-3 (Rear).
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S 117-1
PROJ: 0.635 CM  10.16 CM STAND-OFF
WWALL: 3.175 MM FRONT

'VELOCITY: 4.09 KM/SEC 0 DEG

o ist s oo

Figure 8a. Pressure Wall Plate, Experimental Test No. 117-1 (Front).

117-1
lPROJ: 0.635 CM  10.16 CM STAND-OFF
WALL: 3.175 MM REAR

Figure 8b. Pressure Wall Plate, Experimental Test No. 117-1 (Rear).

CEmTII S fA e
ORIGINAL PASE

43 SLACK AND WHITE FHOTCOGRARH



*H-UN UOTIRTNWTIS 2Jordwl Spod TINH ‘Suwerd nding [eultgd ‘6 2anbt4g

S/WM P+ LV WOSEY =VIQ — "d3S HONI ANV ¢ = ¥3dWng 318100

£000°'¢C Wwia|qod 4 9G¥ QIPAD s77 800 0% S ]
wmn snipby wo snipby
oL o5 (AN 4 8¢ ¥l 00 P 8C <P 9'g QL
i 1 1 i 1 1 Lt 1 1 OO
j .ﬁtl‘l R
- BC
A 4
*”re [~ @-n
. :. . .
. 3 X . A
'] . . »

L g
vLT o'z :
0+ oLz . . - B6
L'z gL
08l e} o -7

[} 051 ozl . ..
- 0z'L ,.01X00'B
M [ OI>X00B 01008
m  0Ix009 -0IX00°T
M  OIx00¢ mxo—xooé
D - 9Tl
WUZ_U> LC—OU

) Aisus() ov

wa eaudysiqg [OIXY
44



117-2
10.16 CM STAND-OFF

W PROJ: 0.635 CM FRONT

=2 \WALL: 3.175 MM
VELOCITY: 4.34 KM/SEC

Figure 10a. Pressure Wall Plate, Experimental Test No. 117-2 (Front).

117-2 ’
PROJ: 0.635 CM 10.16 CM STAND-OFF '
ALL: 3.175 MM REAR —
:-VELOCITY: 4.34 KM/SEC 0 DEG ————a

Figure 10b. Pressure Wall Plate, Experimental Test No. 117-2 (Rear).
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5T
HULL

21 O PERFORATED

’ ® NOT PERFORATED
s
L 97
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'3 T

V (kM/SEC)

Figure 11. Ballistic Limit Curve, Single-Bumper System, Normal Impact
tg = 1.6 mm, ty = 3.175 mm, S = 10.16 cm.

5T
HULL
121 O PERFORATED
' B NOT PERFORATED
S u
S 97
.| . EXPERIMENT - o
o T -
' HULL CODE
31 o
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Figure 12. Ballistic Limit Curve, Double-Bumper System, Normal Impact
tgl = tgz = 0.8 mm, ty = 3.175 mm, S3 = 2.54 cm, S2 = 7.62 cm.
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PRIMARY
DEBRIS CLOUD

Figure 13. Normal Unyawed Cylindrical Projectile Impact of a
Single-Bumper Structure.

d—
-
1.
4
l v
PRIMARY \ Dl 't ‘
SI DEBRIS CLOUD // \

SECONDARY t
S, DEBRIS CLOUD
Figure 14. Normal Unyawed Cylindrical Projectile Impact of a

Double-Bumper Structure.
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V

Figure 15. Coordinate System for Yaw Angle Definitions.

v

Figure 16. Example of Yawed Trajectory in the x-z Plane.
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Figure 27. Critical Yaw Angle Calculation Geometry.
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